

pyeasyga

A simple and easy-to-use implementation of a Genetic Algorithm library in Python

Contents:

	pyeasyga
	Introduction

	Note

	Installation

	Usage
	Simple

	Advanced

	Example of Simple Usage

	Example of Advanced Usage

	Examples
	1-Dimensional Knapsack Problem

	Multi-Dimensional Knapsack Problem

	8 Queens Puzzle

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	v0.3.0

	v0.2.5

	v0.2.4

	v0.2.3

	v0.2.2

	v0.2.0

	v0.1.0

Indices and tables

	Index

	Module Index

pyeasyga

[image: PyPI] [http://badge.fury.io/py/pyeasyga] [image: Build Status] [https://travis-ci.org/remiomosowon/pyeasyga] [image: Coverage Status] [https://coveralls.io/r/remiomosowon/pyeasyga?branch=develop] [image: Downloads] [https://pypi.python.org/pypi/pyeasyga]

Introduction

A simple and easy-to-use implementation of a Genetic Algorithm library in Python.

pyeasyga provides a simple interface to the power of Genetic Algorithms
(GAs). You don’t have to have expert GA knowledge in order to use it.

	Homepage: https://github.com/remiomosowon/pyeasyga

	PyPI: https://pypi.python.org/pypi/pyeasyga

	Documentation: http://pyeasyga.readthedocs.org.

	Issues / Feedback: https://github.com/remiomosowon/pyeasyga/issues

	Free software: BSD license

Installation

At the command line, simply run:

$ pip install pyeasyga

Or clone this repository and run python setup.py install from within the project directory. e.g.:

$ git clone https://github.com/remiomosowon/pyeasyga.git
$ cd pyeasyga
$ python setup.py install

For alternative install methods, see the INSTALL file or the Installation
section in the documentation.

Examples

See the Usage section in the documentation for examples. The example files can
be found in the examples directory.

Note

	Currently under active development

Installation

If you have pip installed, at the command line simply run:

$ pip install pyeasyga

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pyeasyga
$ pip install pyeasyga

Or, download and extract the compressed archive (or clone the repository) from github [https://github.com/remiomosowon/pyeasyga], and inside the directory run:

$ python setup.py install

Usage

To use pyeasyga in a project:

Simple

	Import the module

from pyeasyga import pyeasyga

	Setup your data e.g.

data = [('pear', 50), ('apple', 35), ('banana', 40)]

	Initialise the GeneticAlgorithm class with the only required
parameter: data

ga = pyeasyga.GeneticAlgorithm(data)

	Define a fitness function for the Genetic Algorithm. The function should
take two parameters: a candidate soultion (an individual in GA speak),
and the data that is used to help determine the individual’s fitness

def fitness (individual, data):
 fitness = 0
 if individual.count(1) == 2:
 for (selected, (fruit, profit)) in zip(individual, data):
 if selected:
 fitness += profit
 return fitness

	Set the Genetic Algorithm’s fitness_function attribute to your
defined fitness function

ga.fitness_function = fitness

	Run the Genetic Algorithm

ga.run()

	Print the best solution

print ga.best_individual()

Advanced

	Import the module

from pyeasyga import pyeasyga

	Setup your data e.g.

data = [('pear', 50), ('apple', 35), ('banana', 40)]

	Initialise the GeneticAlgorithm class with the required data
parameter, and all or some of the optional parameters

ga = pyeasyga.GeneticAlgorithm(data,
 population_size=10,
 generations=20,
 crossover_probability=0.8,
 mutation_probability=0.05,
 elitism=True,
 maximise_fitness=True)

Or

ga = pyeasyga.GeneticAlgorithm(data, 10, 20, 0.8, 0.05, True, True)

Or, just initialise the GeneticAlgorithm class with only the required
data parameter, if you are content with the default parameters

ga = pyeasyga.GeneticAlgorithm(data)

	Optionally, define a function to create a representation of a candidate
solution (an individual in GA speak). This function should take in the
data defined in step 1. as a parameter.

def create_individual(data):
 return [random.randint(0, 1) for _ in xrange(len(data))]

	Set the Genetic Algorithm’s create_individual attribute to your
defined function

ga.create_individual = create_individual

	Optionally, define and set functions for the Genetic Algorithm’s genetic
operators (i.e. crossover, mutate, selection)

For the crossover function, supply two individuals (i.e. candidate
solution representations) as parameters,
def crossover(parent_1, parent_2):
 crossover_index = random.randrange(1, len(parent_1))
 child_1 = parent_1[:index] + parent_2[index:]
 child_2 = parent_2[:index] + parent_1[index:]
 return child_1, child_2

and set the Genetic Algorithm's ``crossover_function`` attribute to
your defined function
ga.crossover_function = crossover

For the mutate function, supply one individual (i.e. a candidate
solution representation) as a parameter,
def mutate(individual):
 mutate_index = random.randrange(len(individual))
 if individual[mutate_index] == 0:
 individual[mutate_index] = 1
 else:
 individual[mutate_index] = 0

and set the Genetic Algorithm's ``mutate_function`` attribute to
your defined function
ga.mutate_function = mutate

For the selection function, supply a ``population`` parameter
def selection(population):
 return random.choice(population)

and set the Genetic Algorithm's ``selection_function`` attribute to
your defined function
ga.selection_function = selection

	Define a fitness function for the Genetic Algorithm. The function should
take two parameters: a candidate solution representation (an individual
in GA speak), and the data that is used to help determine the
individual’s fitness

def fitness (individual, data):
 fitness = 0
 if individual.count(1) == 2:
 for (selected, (fruit, profit)) in zip(individual, data):
 if selected:
 fitness += profit
 return fitness

	Set the Genetic Algorithm’s fitness_function attribute to your
defined fitness function

ga.fitness_function = fitness

	Run the Genetic Algorithm

ga.run()

	Print the best solution:

print ga.best_individual()

	You can also examine all the individuals in the last generation:

for individual in ga.last_generation():
 print individual

Example of Simple Usage

This simple example uses the default pyeasyga.GeneticAlgorithm parameters.

The problem is to select only two items from a list (the supplied data) while
maximising the cost of the selected items. (Solution: Selecting the pear and
apple gives the highest possible cost of 90.)

>>> from pyeasyga.pyeasyga import GeneticAlgorithm
>>>
>>> data = [('pear', 50), ('apple', 35), ('banana', 40)]
>>> ga = GeneticAlgorithm(data)
>>>
>>> def fitness (individual, data):
>>> fitness = 0
>>> if individual.count(1) == 2:
>>> for (selected, (fruit, profit)) in zip(individual, data):
>>> if selected:
>>> fitness += profit
>>> return fitness
>>>
>>> ga.fitness_function = fitness
>>> ga.run()
>>> print ga.best_individual()

Example of Advanced Usage

This example uses both default and optional pyeasyga.GeneticAlgorithm
parameters.

The problem is to select only two items from a list (the supplied data) while
maximising the cost of the selected items. (Solution: Selecting the pear and
apple gives the highest possible cost of 90.)

>>> from pyeasyga.pyeasyga import GeneticAlgorithm
>>>
>>> data = [('pear', 50), ('apple', 35), ('banana', 40)]
>>> ga = GeneticAlgorithm(data, 20, 50, 0.8, 0.2, True, True)
>>>
>>> def create_individual(data):
>>> return [random.randint(0, 1) for _ in xrange(len(data))]
>>>
>>> ga.create_individual = create_individual
>>>
>>>
>>> def crossover(parent_1, parent_2):
>>> crossover_index = random.randrange(1, len(parent_1))
>>> child_1 = parent_1[:index] + parent_2[index:]
>>> child_2 = parent_2[:index] + parent_1[index:]
>>> return child_1, child_2
>>>
>>> ga.crossover_function = crossover
>>>
>>>
>>> def mutate(individual):
>>> mutate_index = random.randrange(len(individual))
>>> if individual[mutate_index] == 0:
>>> individual[mutate_index] = 1
>>> else:
>>> individual[mutate_index] = 0
>>>
>>> ga.mutate_function = mutate
>>>
>>>
>>> def selection(population):
>>> return random.choice(population)
>>>
>>> ga.selection_function = selection
>>>
>>> def fitness (individual, data):
>>> fitness = 0
>>> if individual.count(1) == 2:
>>> for (selected, (fruit, profit)) in zip(individual, data):
>>> if selected:
>>> fitness += profit
>>> return fitness
>>>
>>> ga.fitness_function = fitness
>>> ga.run()
>>> print ga.best_individual()
>>>
>>> for individual in ga.last_generation():
>>> print individual

Examples

1-Dimensional Knapsack Problem

one_dimensional_knapsack.py

This example solves the one-dimensional knapsack problem used as the example
on the Wikipedia page for the Knapsack problem [http://en.wikipedia.org/wiki/Knapsack_problem]. Here is the problem statement [http://git.io/fa25nw].

from pyeasyga import pyeasyga

setup data
data = [{'name': 'box1', 'value': 4, 'weight': 12},
 {'name': 'box2', 'value': 2, 'weight': 1},
 {'name': 'box3', 'value': 10, 'weight': 4},
 {'name': 'box4', 'value': 1, 'weight': 1},
 {'name': 'box5', 'value': 2, 'weight': 2}]

ga = pyeasyga.GeneticAlgorithm(data) # initialise the GA with data

define a fitness function
def fitness(individual, data):
 values, weights = 0, 0
 for selected, box in zip(individual, data):
 if selected:
 values += box.get('value')
 weights += box.get('weight')
 if weights > 15:
 values = 0
 return values

ga.fitness_function = fitness # set the GA's fitness function
ga.run() # run the GA
print ga.best_individual() # print the GA's best solution

To run:

$ python one_dimensional_knapsack.py

Output:

(15, [0, 1, 1, 1, 1])

i.e. if you select all boxes except the first one, you get a maximum amount of
$15 while still keeping the overall weight under or equal to 15kg.

Multi-Dimensional Knapsack Problem

multi_dimensional_knapsack.py

This solves the multidimensional knapsack problem (MKP) seen here [http://git.io/Wz4jBQ]. It is a well-known NP-hard combinatorial optimisation problem.

from pyeasyga import pyeasyga

setup data
data = [(821, 0.8, 118), (1144, 1, 322), (634, 0.7, 166), (701, 0.9, 195),
 (291, 0.9, 100), (1702, 0.8, 142), (1633, 0.7, 100), (1086, 0.6, 145),
 (124, 0.6, 100), (718, 0.9, 208), (976, 0.6, 100), (1438, 0.7, 312),
 (910, 1, 198), (148, 0.7, 171), (1636, 0.9, 117), (237, 0.6, 100),
 (771, 0.9, 329), (604, 0.6, 391), (1078, 0.6, 100), (640, 0.8, 120),
 (1510, 1, 188), (741, 0.6, 271), (1358, 0.9, 334), (1682, 0.7, 153),
 (993, 0.7, 130), (99, 0.7, 100), (1068, 0.8, 154), (1669, 1, 289)]

ga = pyeasyga.GeneticAlgorithm(data) # initialise the GA with data
ga.population_size = 200 # increase population size to 200 (default value is 50)

define a fitness function
def fitness(individual, data):
 weight, volume, price = 0, 0, 0
 for (selected, item) in zip(individual, data):
 if selected:
 weight += item[0]
 volume += item[1]
 price += item[2]
 if weight > 12210 or volume > 12:
 price = 0
 return price

ga.fitness_function = fitness # set the GA's fitness function
ga.run() # run the GA
print ga.best_individual() # print the GA's best solution

To run:

$ python multi_dimensional_knapsack.py

Output:

(3531, [0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1])

i.e. the indicated selection of items satisfies the required weight and volume
constraints, and gives a total value of 3531.

8 Queens Puzzle

8_queens.py

This solves the 8 queens puzzle [http://en.wikipedia.org/wiki/Eight_queens_puzzle].

import random
from pyeasyga import pyeasyga

setup seed data
seed_data = [0, 1, 2, 3, 4, 5, 6, 7]

initialise the GA
ga = pyeasyga.GeneticAlgorithm(seed_data,
 population_size=200,
 generations=100,
 crossover_probability=0.8,
 mutation_probability=0.2,
 elitism=True,
 maximise_fitness=False)

define and set function to create a candidate solution representation
def create_individual(data):
 individual = data[:]
 random.shuffle(individual)
 return individual

ga.create_individual = create_individual

define and set the GA's crossover operation
def crossover(parent_1, parent_2):
 crossover_index = random.randrange(1, len(parent_1))
 child_1a = parent_1[:crossover_index]
 child_1b = [i for i in parent_2 if i not in child_1a]
 child_1 = child_1a + child_1b

 child_2a = parent_2[crossover_index:]
 child_2b = [i for i in parent_1 if i not in child_2a]
 child_2 = child_2a + child_2b

 return child_1, child_2

ga.crossover_function = crossover

define and set the GA's mutation operation
def mutate(individual):
 mutate_index1 = random.randrange(len(individual))
 mutate_index2 = random.randrange(len(individual))
 individual[mutate_index1], individual[mutate_index2] = individual[mutate_index2], individual[mutate_index1]

ga.mutate_function = mutate

define and set the GA's selection operation
def selection(population):
 return random.choice(population)

ga.selection_function = selection

define a fitness function
def fitness (individual, data):
 collisions = 0
 for item in individual:
 item_index = individual.index(item)
 for elem in individual:
 elem_index = individual.index(elem)
 if item_index != elem_index:
 if item - (elem_index - item_index) == elem \
 or (elem_index - item_index) + item == elem:
 collisions += 1
 return collisions

ga.fitness_function = fitness # set the GA's fitness function
ga.run() # run the GA

function to print out chess board with queens placed in position
def print_board(board_representation):
 def print_x_in_row(row_length, x_position):
 print '',
 for _ in xrange(row_length):
 print '---',
 print '\n|',
 for i in xrange(row_length):
 if i == x_position:
 print '{} |'.format('X'),
 else:
 print ' |',
 print ''

 def print_board_bottom(row_length):
 print '',
 for _ in xrange(row_length):
 print '---',

 num_of_rows = len(board_representation)
 row_length = num_of_rows #rows == columns in a chessboard

 for row in xrange(num_of_rows):
 print_x_in_row(row_length, board_representation[row])

 print_board_bottom(row_length)
 print '\n'

print the GA's best solution; a solution is valid only if there are no collisions
if ga.best_individual()[0] == 0:
 print ga.best_individual()
 print_board(ga.best_individual()[1])
else:
 print None

To run:

$ python 8_queens.py

Output:

(0, [2, 5, 7, 0, 3, 6, 4, 1])

 --- --- --- --- --- --- --- ---
| | | X | | | | | |
 --- --- --- --- --- --- --- ---
| | | | | | X | | |
 --- --- --- --- --- --- --- ---
| | | | | | | | X |
 --- --- --- --- --- --- --- ---
| X | | | | | | | |
 --- --- --- --- --- --- --- ---
| | | | X | | | | |
 --- --- --- --- --- --- --- ---
| | | | | | | X | |
 --- --- --- --- --- --- --- ---
| | | | | X | | | |
 --- --- --- --- --- --- --- ---
| | X | | | | | | |
 --- --- --- --- --- --- --- ---

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/remiomosowon/pyeasyga/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

pyeasyga could always use more documentation, whether as part of the official
pyeasyga docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/remiomosowon/pyeasyga/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyeasyga for local development.

	Fork the pyeasyga repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyeasyga.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyeasyga
$ cd pyeasyga/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pyeasyga tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7 and 3.4. Please make sure you don’t break compatibility.
Check https://travis-ci.org/remiomosowon/pyeasyga/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_pyeasyga

Credits

Development Lead

	Ayodeji Remi-Omosowon <remiomosowon@gmail.com>

Contributors

	Yasser Gonzalez <yasserglez@gmail.com>

History

v0.3.0

2015-04-07

	Added Python 3.4 support without breaking Python 2 compatibility (thanks to yasserglez [https://github.com/yasserglez])

v0.2.5

2014-07-09

	Added an example that solves the 8 Queens Puzzle [http://en.wikipedia.org/wiki/Eight_queens_puzzle]

2014-07-09

	Modified the GeneticAlgorithm class initialisation parameters

	Made changes to USAGE documentation

	Added EXAMPLE documentation as a separate section

v0.2.4

2014-07-07

	Refactored most of the code; Made GeneticAlgorithm class more OOP

	Made changes to INSTALLATION documentation

v0.2.3

2014-07-05

	Fixed breaking python 2.6 build

v0.2.2

2014-07-05

	Removed duplicate ‘Example’ documentation; now maintaining only one copy in
examples/README.rst

	Added link to jeffknupp’s sandman repo in HISTORY

	Modified release option in Makefile to also upload project documentation

	Added INSTALLATION and EXAMPLE sections to README.rst

	Removed easy_install installation step from documentation (pip is
sufficient)

	Added a simple example of usage to docs/usage.rst

	Reduced the default GA population and generation size (to allow applications
that use the different parameters to run quickly)

	Modified tests to account for the new default population, generation size

	Added docstrings to all methods

v0.2.0

2014-07-04

	First upload to pypi.

	Added changes made to HISTORY (pypi upload, new version)

v0.1.0

2014-06-23

	Start of pyeasyga development.

2014-07-03

	Implemented all of basic GA functionality

	Fix issue with odd-numbered population that causes an off-by-one error in the
population size

	Set default ga selection function to tournament_selection

	Created examples to show how to use the library

	Start versioning (better late than never); copied jeffknupp’s
update_version.sh from sandman [https://github.com/jeffknupp/sandman/]

selected versioning standard: major.minor.micro (e.g. 2.1.5)

	major => big changes that can break compatibility

	minor => new features

	micro => bug fixes

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyeasyga	

 	
 	
 pyeasyga.pyeasyga	

Index

 B
 | C
 | G
 | L
 | P
 | R

B

 	
 	best_individual() (pyeasyga.pyeasyga.GeneticAlgorithm method)

C

 	
 	calculate_population_fitness() (pyeasyga.pyeasyga.GeneticAlgorithm method)

 	Chromosome (class in pyeasyga.pyeasyga)

 	create_first_generation() (pyeasyga.pyeasyga.GeneticAlgorithm method)

 	
 	create_initial_population() (pyeasyga.pyeasyga.GeneticAlgorithm method)

 	create_new_population() (pyeasyga.pyeasyga.GeneticAlgorithm method)

 	create_next_generation() (pyeasyga.pyeasyga.GeneticAlgorithm method)

G

 	
 	GeneticAlgorithm (class in pyeasyga.pyeasyga)

L

 	
 	last_generation() (pyeasyga.pyeasyga.GeneticAlgorithm method)

P

 	
 	pyeasyga (module)

 	
 	pyeasyga.pyeasyga (module)

R

 	
 	rank_population() (pyeasyga.pyeasyga.GeneticAlgorithm method)

 	
 	run() (pyeasyga.pyeasyga.GeneticAlgorithm method)

pyeasyga

	pyeasyga package
	Submodules

	pyeasyga.pyeasyga module

	Module contents

pyeasyga package

Submodules

pyeasyga.pyeasyga module

pyeasyga module

	
class pyeasyga.pyeasyga.Chromosome(genes)

	Bases: object

Chromosome class that encapsulates an individual’s fitness and solution
representation.

	
class pyeasyga.pyeasyga.GeneticAlgorithm(seed_data, population_size=50, generations=100, crossover_probability=0.8, mutation_probability=0.2, elitism=True, maximise_fitness=True)

	Bases: object

Genetic Algorithm class.

This is the main class that controls the functionality of the Genetic
Algorithm.

A simple example of usage:

>>> # Select only two items from the list and maximise profit
>>> from pyeasyga.pyeasyga import GeneticAlgorithm
>>> input_data = [('pear', 50), ('apple', 35), ('banana', 40)]
>>> easyga = GeneticAlgorithm(input_data)
>>> def fitness (member, data):
>>> return sum([profit for (selected, (fruit, profit)) in
>>> zip(member, data) if selected and
>>> member.count(1) == 2])
>>> easyga.fitness_function = fitness
>>> easyga.run()
>>> print easyga.best_individual()

	
best_individual()

	Return the individual with the best fitness in the current
generation.

	
calculate_population_fitness()

	Calculate the fitness of every member of the given population using
the supplied fitness_function.

	
create_first_generation()

	Create the first population, calculate the population’s fitness and
rank the population by fitness according to the order specified.

	
create_initial_population()

	Create members of the first population randomly.

	
create_new_population()

	Create a new population using the genetic operators (selection,
crossover, and mutation) supplied.

	
create_next_generation()

	Create subsequent populations, calculate the population fitness and
rank the population by fitness in the order specified.

	
last_generation()

	Return members of the last generation as a generator function.

	
rank_population()

	Sort the population by fitness according to the order defined by
maximise_fitness.

	
run()

	Run (solve) the Genetic Algorithm.

Module contents

pyeasyga

A simple and easy-to-use genetic algorithm implementation library in Python.

For a bit array solution representation, simply instantiate the
GeneticAlgorithm class with input data, define and supply a fitness function,
run the Genetic Algorithm, and retrieve the solution!

Other solution representations will require setting some more attributes.

 _images/badge.png
‘coverage 100%

_images/pyeasyga.png
Ppypi package 03.1

_static/ajax-loader.gif

_images/pyeasyga1.png
“build passing

_images/pyeasyga2.png
“downloads | 306/month

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 pyeasyga

 		
 pyeasyga

 		
 Introduction

 		
 Installation

 		
 Examples

 		
 Note

 		
 Installation

 		
 Usage

 		
 Simple

 		
 Advanced

 		
 Example of Simple Usage

 		
 Example of Advanced Usage

 		
 Examples

 		
 1-Dimensional Knapsack Problem

 		
 Multi-Dimensional Knapsack Problem

 		
 8 Queens Puzzle

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 v0.3.0

 		
 v0.2.5

 		
 v0.2.4

 		
 v0.2.3

 		
 v0.2.2

 		
 v0.2.0

 		
 v0.1.0

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

